Author:
Dura Mathilde,Teissandier Aurélie,Armand Mélanie,Barau Joan,Bonneville Lorraine,Weber Michael,Baudrin Laura G.,Lameiras Sonia,Bourc’his Deborah
Abstract
AbstractDNA methylation plays a critical role in spermatogenesis, as evidenced by the male sterility of DNA methyltransferase (DNMT) mutant mice. Here, we report a striking division of labor in the establishment of the methylation landscape of male germ cells and its functions in spermatogenesis: while DNMT3C is essential for preventing retrotransposons from interfering with meiosis, DNMT3A broadly methylates the genome—at the exception of DNMT3C-dependent retrotransposons—and controls spermatogonial stem cell (SSC) plasticity. By reconstructing developmental trajectories through single-cell RNA-seq and by profiling chromatin states, we found that Dnmt3A mutant SSCs can only self-renew and no longer differentiate due to spurious enhancer activation that enforces an irreversible stem cell gene program. We therefore provide a novel function for DNA methylation in male fertility: the epigenetic programming of SSC commitment to differentiation and to life-long spermatogenesis supply.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献