Abstract
ABSTRACTThe gold-standard for the management of patients affected by large-surface third-degree burns is autologous skin graft. When burns affect <40% total body surface area (TBSA), meshed skin samples harvested from non-affected donor sites can be used as grafts. In more severe cases corresponding to burns affecting >40% TBSA), the donor site surfaces are insufficient. The alternative grafting strategy uses bioengineered skin substitutes that are generated using the own keratinocytes of the patient after ex vivo expansion. Optimal setup of the bioengineering process involved determination of the required graft surface, adjustment of cell quantities, and control of the timing necessary for production. Accordingly, tools to assist the design of personalized protocols will certainly contribute to care quality and cost limitation. Here, I describe the principle of a software-assisted calculation of the required graft surface and keratinocyte numbers needed, according to specific patient clinical characteristics. The software also offers assistance to estimate the Baux score, a method that has been proposed to link the severity of burn injuries and the prognosis for the patient. In conclusion, this software provides a principle of assisted burned patient diagnose and skin substitute bioengineering process which development may facilitate the design of personalized protocols for skin regenerative cell therapies.
Publisher
Cold Spring Harbor Laboratory