Methylation of 23S rRNA G748 and the ribosomal protein L22 Lys-94 are critical factors for maintaining the association between ribosome stalling and proteome composition in Streptococcus pneumoniae

Author:

Shoji TatsumaORCID

Abstract

AbstractBackground23S rRNA modification located at the nascent peptides exit tunnel plays an important role in both translation processes and the binding of the antibiotics. Methylation of the guanine at position 748 (m1G748) in 23S rRNA in Streptococcus pneumoniae is involved in the ribosome stalling and the binding of the antibiotic telithromycin (TEL). The disruption of the gene encoding RlmAII which methylates 23S rRNA G748 results in the increased resistance of TEL in S. pneumoniae. However, an isolated high-level TEL-resistant S. pneumoniae strain indicated that additional undescribed factors were involved in TEL resistance in S. pneumoniae.ResultsWe successfully isolated a high-level TEL-resistant S. pneumoniae RlmAII mutant and determined the whole-genome sequence. The lysine residue at the position 94 in ribosomal protein 22 (L22 K94) was critical in binding of TEL to the ribosome. A growth competition assay showed that L22 K94 was required for the function of m1G748. Ribosome profiling revealed that m1G748 and L22 K94 were both essential to maintain the relationship between the ribosome stalling and proteome composition.ConclusionIn S. pneumoniae, the combination of methylation status of G748 and the residue at position 94 in L22 are essential for both the distribution of ribosome stalling and the binding of TEL to ribosomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3