Visualization of loop extrusion by DNA nanoscale tracing in single human cells

Author:

Beckwith KSORCID,Ødegård-Fougner ØORCID,Morero NRORCID,Barton CORCID,Schueder FORCID,Alexander SORCID,Jungmann RORCID,Birney EORCID,Ellenberg JORCID

Abstract

SummaryThe spatial organization of the genome is essential for its functions, including gene expression, DNA replication and repair, as well as chromosome segregation1. Biomolecular condensates and loop extrusion have been proposed as the principal driving forces that underlie the formation of non-random structures such as chromatin compartments and topologically associating domains2,3. However, if the actual 3D-folding of DNA in single cells is consistent with these mechanisms has been difficult to address in situ. Here, we present LoopTrace, a workflow for high-resolution reconstruction of 3D genome architecture without DNA denaturation. Classical fluorescence in situ hybridization approaches can link chromatin architecture to DNA sequence but disrupt chromatin structure at the critical nanoscale of individual loops. Our workflow employs non-denaturing enzymatic strand resection4,5, to conserve chromatin structure and can resolve the 3D-fold of chromosomal DNA with better than 5-kb-resolution in single human cells. Our results show that the chromatin fiber behaves as a random coil that can be further structured in a manner consistent with loop formation, explaining the emergence of topologically associated domain-like features in cell population averages. Mining a large amount of single-cell data computationally, we reveal chromatin folding intermediates consistent with progressive loop extrusion and stabilized loops, highlighting the power of our method to visualize the nanoscale features of genome organization in situ.

Publisher

Cold Spring Harbor Laboratory

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3