Integrating Rigidity Analysis into the Exploration of Protein Conformational Pathways using RRT* and MC

Author:

Afrasiabi FatemehORCID,Dehghanpoor RaminORCID,Haspel NuritORCID

Abstract

AbstractTo understand how proteins function on a cellular level, it is of paramount importance to understand their structures and dynamics, including the conformational changes they undergo to carry out their function. For the aforementioned reasons, the study of large conformational changes in proteins has been an interest to researchers for years. However, since some proteins experience rapid and transient conformational changes, it is hard to experimentally capture the intermediate structures. Additionally, computational brute force methods are computationally intractable, which makes it impossible to find these pathways which require a search in a high-dimensional, complex space. In our previous work, we implemented a hybrid algorithm that combines Monte-Carlo (MC) sampling and RRT*, a version of the Rapidly Exploring Random Trees (RRT) robotics-based method, to make the conformational exploration more accurate and efficient, and produce smooth conformational pathways. In this work, we integrated the rigidity analysis of proteins into our algorithm to guide the search to explore flexible regions. We demonstrate that rigidity analysis dramatically reduces the run time and accelerates convergence.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3