Calibration-free 3D reconstruction of firefly trajectories from 360-degree cameras

Author:

Sarfati RaphaëlORCID,Peleg Orit

Abstract

Over the past few decades, progress in animal tracking techniques, from large migrating mammals to swarming insects, has facilitated significant advances in ecology, behavioural biology, and conservation science. Recently, we developed a technique to record and track flashing fireflies in their natural habitat using pairs of 360-degree cameras. The method, which has the potential to help identify and monitor firefly populations worldwide, was successfully implemented in various natural swarms. However, camera calibration remained tedious and time-consuming. Here, we propose and implement an algorithm that calibrates the cameras directly from the data, requiring minimal user input. We explain the principles of the calibration-free algorithm, and demonstrate the ease and efficiency of its implementation. This method is relatively inexpensive, versatile, and well-suited for automatic processing and the collection of a large dataset of firefly trajectories across species and populations. This calibration-free method paves the way to citizen science efforts for monitoring and conservation of firefly populations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3