A phased genome assembly for allele-specific analysis in Trypanosoma brucei

Author:

Cosentino ROORCID,Brink BGORCID,Siegel TNORCID

Abstract

AbstractMany eukaryotic organisms are diploid or even polyploid, i.e. they harbour two or more independent copies of each chromosome. Yet, to date most reference genome assemblies represent a mosaic consensus sequence in which the homologous chromosomes have been collapsed into one sequence. This procedure generates sequence artefacts and impedes analyses of allele-specific mechanisms. Here, we report the allele-specific genome assembly of the diploid unicellular protozoan parasite Trypanosoma brucei.As a first step, we called variants on the allele-collapsed assembly of the T. brucei Lister 427 isolate using short-read error-corrected PacBio reads. We identified 96 thousand heterozygote variants across the genome (average of 4.2 variants / kb), and observed that the variant density along the chromosomes was highly uneven. Several long (>100 kb) regions of loss-of-heterozigosity (LOH) were identified, suggesting recent recombination events between the alleles. By analysing available genomic sequencing data of multiple Lister 427 derived clones, we found that most LOH regions were conserved, except for some that were specific to clones adapted to the insect lifecycle stage. Surprisingly, we also found that some Lister 427 clones were aneuploid. We found evidence of trisomy in chromosome five (chr 5), chr 2, chr 6 and chr 7. Moreover, by analysing RNA-seq data, we showed that the transcript level is proportional to the ploidy, evidencing the lack of a general expression control at the transcript level in T. brucei.As a second step, to generate an allele-specific genome assembly, we used two powerful datatypes for haplotype reconstruction: raw long reads (PacBio) and chromosome conformation (Hi-C) data. With this approach, we were able to assign 99.5% of all heterozygote variants to a specific homologous chromosome, building a 66 Mb long T. brucei Lister 427 allele-specific genome assembly. Hereby, we identified genes with allele-specific premature termination codons and showed that differences in allele-specific expression at the level of transcription and translation can be accurately monitored with the fully phased genome assembly.The obtained reference-grade allele-specific genome assembly of T. brucei will enable the analysis of allele-specific phenomena, as well as the better understanding of recombination and evolutionary processes. Furthermore, it will serve as a standard to ‘benchmark’ much needed automatic genome assembly pipelines for highly heterozygous wild species isolates.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3