Regulation of DIM-2-dependent repeat-induced point mutation (RIP) by the recombination-independent homologous DNA pairing in Neurospora crassa

Author:

Carlier Florian,Nguyen Tinh-Suong,Mazur Alexey K.,Gladyshev EugeneORCID

Abstract

ABSTRACTRepeat-induced point mutation (RIP) is a genetic process that creates cytosine-to-thymine (C-to-T) transitions in duplicated genomic sequences in fungi. RIP detects duplications irrespective of their origin, particular sequence, coding capacity, or genomic positions. Previous studies suggested that RIP involves a cardinally new mechanism of sequence recognition that operates on intact double-stranded DNAs. In the fungus Neurospora crassa, RIP can be mediated by a putative C5-cytosine methyltransferase (CMT) RID or/and a canonical CMT DIM-2. These distinct RIP pathways feature opposite substrate preferences: RID-dependent RIP is largely limited to the duplicated sequences, whereas DIM-2-dependent RIP preferentially mutates adjacent non-repetitive regions. Using DIM-2-dependent RIP as a principal readout of repeat recognition, here we show that GC-rich repeats promote stronger RIP compared to AT-rich repeats (independently of their intrinsic propensities to become mutated), with the relative contribution of AT base-pairs being close to zero. We also show that direct repeats promote much more efficient DIM-2-dependent RIP than inverted repeats; both the spacer DNA between the repeat units (the linker) and the flanking regions are similarly affected by this process. These and other results support the idea that repeat recognition for RIP involves formation of many short interspersed quadruplexes between homologous double-stranded DNAs, which need to undergo concomitant changes in their linking number to accommodate pairing.SUMMARYDuring repeat-induced point mutation (RIP) gene-sized duplications of genomic DNA are detected by a mechanism that likely involves direct pairing of homologous double-stranded DNAs. We show that DIM-2-dependent RIP, triggered by closely-positioned duplications, is strongly affected by their relative orientations (direct versus inverted). We also show that GC-rich repeats promote RIP more effectively than AT-rich repeats. These results support a model in which homologous dsDNAs can pair by establishing interspersed quadruplex-based contacts with concomitant changes in their supercoiling status.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3