Identification of biomarkers and pathways of mouse embryonic fibroblasts with the dysfunction of mitochondrial DNA

Author:

Gu Hanming

Abstract

AbstractMitochondrial diseases are clinically heterogeneous which involve multiple systems such as organs that are highly dependent on metabolism. Dysfunction of mtDNA is the main cause of mitochondrial diseases that trigger inflammation and immune responses. Here, we aim to identify the biological function and pathways of MEFs with the dysfunction of mtDNA through deletion of YME1L. The gene expression profiles of GSE161735 dataset were originally created by the Illumina NovaSeq 6000 (Mus musculus) for gene biogenesis and function panel. The biological and functional pathways were analyzed by the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), Gene Ontology (GO), and Reactom visual map. KEGG and GO results showed the metabolism and immune responses were mostly affected by the loss of mtDNA. Moreover, we discovered several interacting genes including POLR2F, HIST1H2BJ, PPP1CC, HOXB4, ARG1, APITD1, BUB1B, POLR2K, HOXC4, and HOXB3 were involved in the regulation of metabolic or cancer diseases. Further, we predicted several regulators that had the ability to affect mitochondria during the dysfunction of mtDNA by L1000fwd analysis. Thus, this study provides further insights into the mechanism of mtDNA in metabolic diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3