Large-scale voltage imaging in the brain using targeted illumination

Author:

Xiao Sheng,Lowet Eric,Gritton Howard J.ORCID,Fabris Pierre,Wang Yangyang,Sherman Jack,Mount Rebecca,Tseng Hua-an,Man Heng-Ye,Mertz Jerome,Han Xue

Abstract

AbstractRecent improvements in genetically encoded voltage indicators enabled optical imaging of action potentials and subthreshold membrane voltage dynamics from single neurons in the mammalian brain. To perform high speed voltage imaging, widefield microscopy remains an essential tool for recording activity from many neurons simultaneously over a large anatomical area. However, the lack of optical sectioning makes widefield microscopy more prone to background signal contamination, and thus far voltage imaging using fully genetically encoded voltage indicators remains limited to simultaneous sampling of a few cells over a restricted field-of-view. We here demonstrate a strategy for large scale voltage imaging using the fully genetically encoded voltage indicator SomArchon and targeted illumination. We implemented a simple, low-cost digital micromirror device based targeted illumination strategy to restrict illumination to the cells of interest, and systematically quantified the improvement of this microscopy design theoretically and experimentally with SomArchon expressing neurons in single layer cell cultures and in the brains of awake mice. We found that targeted illumination, in comparison to widefield illumination, increased SomArchon signal contrast and reduced background cross-contamination in the brain. Such improvement permitted the reduction of illumination intensity, and thus reduced fluorescence photobleaching and prolonged imaging duration. When coupled with a high-speed, large area sCMOS camera, we routinely imaged tens of spiking neurons simultaneously over minutes in the brain. Thus, the widefield microscopy design with an integrated targeted illumination system described here offers a simple solution for voltage imaging analysis of large neuron populations in behaving animals.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3