Abstract
AbstractThe COVID-19 pandemic has led to an urgent need for the identification of new antiviral drug therapies that can be rapidly deployed to treat patients with this disease. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of COVID-19. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cellbased experimental assessment reveals several clinically-relevant repurposing drug candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献