Abstract
AbstractChemical reaction networks involving molecular species at low copy numbers lead to stochasticity in protein levels in gene expression at the single-cell level. Mathematical modelling of this stochastic phenomenon enables us to elucidate the underlying molecular mechanisms quantitatively. Here we present a two-stage stochastic gene expression model that extends the standard model by an mRNA inactivation loop. The extended model exhibits smaller protein noise than the original two-stage model. Interestingly, the fractional reduction of noise is a non-monotonous function of protein stability, and can be substantial especially if the inactivated mRNA is stable. We complement the noise study by an extensive mathematical analysis of the joint steady-state distribution of active and inactive mRNA and protein species. We determine its generating function and derive a recursive formula for the protein distribution. The results of the analytical formula are cross-validated by kinetic Monte-Carlo simulation.
Publisher
Cold Spring Harbor Laboratory