Haplotype Associated RNA Expression (HARE) Improves Prediction of Complex Traits in Maize

Author:

Giri AnjuORCID,Khaipho-Burch MerrittORCID,Buckler Edward S.ORCID,Ramstein Guillaume P.ORCID

Abstract

AbstractGenomic prediction typically relies on associations between single-site polymorphisms and traits of interest. This representation of genomic variability has been successful for prediction within populations. However, it usually cannot capture the complex effects due to combination of alleles in haplotypes. Therefore, accuracy across populations has usually been low. Here we present a novel and cost-effective method for imputing cis haplotype associated RNA expression (HARE, RNA expression of genes by haplotype), studied their transferability across tissues, and evaluated genomic prediction models within and across populations. HARE focuses on tightly linked cis acting causal variants in the immediate vicinity of the gene, while excluding trans effects from diffusion and metabolism, so it would be more transferrable across different tissues and populations. We showed that HARE estimates captured one-third of the variation in gene expression and were more transferable across diverse tissues than the measured transcript expression. HARE estimates were used in genomic prediction models evaluated within and across two diverse maize panels – a diverse association panel (Goodman Association panel) and a large half-sib panel (Nested Association Mapping panel) – for predicting 26 complex traits. HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved haplotype structure, suggesting that HARE carried functional information in addition to information about haplotype structure. The largest increase was observed when the model was trained in the Nested Association Mapping panel and tested in the Goodman Association panel. Additionally, HARE yielded higher within-population prediction accuracy as compared to measured expression values. The accuracy achieved by measured expression was variable across tissues whereas accuracy using HARE was more stable across tissues. Therefore, imputing RNA expression of genes by haplotype is stable, cost-effective, and transferable across populations.Author summaryThe increasing availability of genomic data has been widely used in the prediction of many traits. However, genome wide prediction has been mostly carried out within populations and without explicit modeling of RNA or protein expression. In this study, we explored the prediction of field traits within and across populations using estimated RNA expression attributable to only the DNA sequence around a gene. We showed that the estimated RNA expression was more transferable than overall measured RNA expression. We improved prediction of field traits up to 15% using estimated gene expression as compared to observed expression or gene sequence alone. Overall, these findings indicate that structural and functional information in the gene sequence are highly transferable.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3