Author:
Lee Gloria,Leech Gregor,Lwin Pancy,Michel Jonathan,Currie Christopher,Rust Michael J.,Ross Jennifer L.,McGorty Ryan J.,Das Moumita,Robertson-Anderson Rae M.
Abstract
The cytoskeleton is a model active matter system that controls diverse cellular processes from division to motility. While both active actomyosin dynamics and actin-microtubule interactions are key to the cytoskeleton’s versatility and adaptability, an understanding of their interplay is lacking. Here, we couple microscale experiments with mechanistic modeling to elucidate how connectivity, rigidity, and force-generation affect emergent material properties in in vitro composites of actin, tubulin, and myosin. We use time-resolved differential dynamic microscopy and spatial image autocorrelation to show that ballistic contraction occurs in composites with sufficient flexibility and motor density, but that a critical fraction of microtubules is necessary to sustain controlled dynamics. Our active double-network models reveal that percolated actomyosin networks are essential for contraction, but that networks with comparable actin and microtubule densities can uniquely resist mechanical stresses while simultaneously supporting substantial restructuring. Our findings provide a much-needed blueprint for designing cytoskeleton-inspired materials that couple tunability with resilience and adaptability.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献