Deep learning identifies pathological abnormalities predictive of graft loss in kidney transplant biopsies

Author:

Yi Zhengzi,Salem Fadi,Menon Madhav C,Keung Karen,Xi Caixia,Hultin Sebastian,Al Rasheed M. Rizwan Haroon,Li Li,Su Fei,Sun Zeguo,Wei Chengguo,Huang Weiqing,Fredericks Samuel,Lin Qisheng,Banu Khadija,Wong Germaine,Rogers Natasha M.,Farouk Samira,Cravedi Paolo,Shingde Meena,Smith R. Neal,Rosales Ivy A.,O’Connell Philip J.,Colvin Robert B.,Murphy Barbara,Zhang Weijia

Abstract

AbstractBackgroundInterstitial fibrosis, tubular atrophy, and inflammation are major contributors to renal allograft failure. Here we seek an objective, quantitative pathological assessment of these lesions to improve predictive utility.MethodsWe constructed a deep-learning-based pipeline recognizing normal vs. abnormal kidney tissue compartments and mononuclear leukocyte (MNL) infiltrates from Periodic acid-Schiff (PAS) stained slides of transplant biopsies (training: n=60, testing: n=33) that quantified pathological lesions specific for interstitium, tubules and MNL infiltration. The pipeline was applied to 789 whole slide images (WSI) from baseline (n=478, pre-implantation) and 12-month post-transplant (n=311) protocol biopsies in two independent cohorts (GoCAR: 404 patients, AUSCAD: 212 patients) of transplant recipients to correlate composite lesion features with graft loss.ResultsOur model accurately recognized kidney tissue compartments and MNLs. The digital features significantly correlated with Banff scores, but were more sensitive to subtle pathological changes below the thresholds in Banff scores. The Interstitial and Tubular Abnormality Score (ITAS) in baseline samples was highly predictive of 1-year graft loss (p=2.8e-05), while a Composite Damage Score (CDS) in 12-month post-transplant protocol biopsies predicted later graft loss (p=7.3e-05). ITAS and CDS outperformed Banff scores or clinical predictors with superior graft loss prediction accuracy. High/intermediate risk groups stratified by ITAS or CDS also demonstrated significantly higher incidence of eGFR decline and subsequent graft damage.ConclusionsThis deep-learning approach accurately detected and quantified pathological lesions from baseline or post-transplant biopsies, and demonstrated superior ability for prediction of posttransplant graft loss with potential application as a prevention, risk stratification or monitoring tool.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. A Survival Advantage for Renal Transplantation

2. Histopathological characteristics and causes of kidney graft failure in the current era of immunosuppression;World J Transplant,2019

3. International variation in the interpretation of renal transplant biopsies: Report of the CERTPAP Project11A complete listing of the participants who all contributed equally to the work of the CERTPAP Project includes Peter N. Furness (Leicester, UK); Nicholas Taub (Leicester, United Kingdom); Karel J.M. Assmann (Nijmegen, The Netherlands); Giovanni Banfi (Milan, Italy); John N. Botelis (Athens, Greece); Marta Carrera (Barcelona, Spain); Jean-Pierre Cosyns (Brussels, Belgium); Anthony M. Dorman (Dublin, Ireland); Dominique Droz (Paris, France); Claire M. Hill (Belfast, N. Ireland); Bela Iványi (Kossuth, Hungary); Silke Kapper (Mannheim, Germany); Erik N. Larsson (Uppsala, Sweden); Aryvdas Laurinavicius (Vilius, Lithuania); Niels Marcussen (Aachus, Denmark); Anna Paula Martins (Lisbon, Portugal); Michael J. Mihatsch (Basel, Switzerland); Lydia Nakopoulou (Athens, Greece); Volker Nickeleit (Basel, Switzerland); L-H Nöel (Paris, France); Timo Paavonen (Helsinki, Finland); Agnieszua K. Perkowska (Warsaw, Poland); Heinz Regele (Vienna, Austria); Rafail Rosenthal (Riga, Latvia); Pavel Rossmann (Prague, Czech Republic); Wotgech A. Rowinski (Warsaw, Poland); Daniel Seron (Barcelona, Spain); Stale Sund (Oslo, Norway); Eero I. Taskinen (Helsinki, Finland); Tatjana Tihomirova (Riga, Latvia); and Rudiger Waldherr (Mannheim, Germany).

4. Relationship between eGFR Decline and Hard Outcomes after Kidney Transplants

5. Analysis of Biomarkers Within the Initial 2 Years Posttransplant and 5-Year Kidney Transplant Outcomes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3