Soil depth gradients in microbial growth kinetics under deeply- vs. shallow-rooted plants

Author:

Min Kyungjin,Slessarev Eric,Kan Megan,McFarlane Karis,Oerter Erik,Pett-Ridge Jennifer,Nuccio Erin,Berhe Asmeret Asefaw

Abstract

AbstractClimate-smart land management practices that replace shallow-rooted annual crop systems with deeply-rooted perennial plants can contribute to soil carbon sequestration. However, deep soil carbon accrual may be influenced by active microbial biomass and their capacity to assimilate fresh carbon at depth. Incorporating active microbial biomass, dormancy and growth in microbially-explicit models can improve our ability to predict soil’s capacity to store carbon. But, so far, the microbial parameters that are needed for such modeling are poorly constrained, especially in deep soil layers. Here, we investigated whether a change in crop rooting depth affects microbial growth kinetics in deep soils compared to surface soils. We used a lab incubation experiment and growth kinetics model to estimate how microbial parameters vary along 240 cm of soil depth in profiles under shallow- (soy) and deeply-rooted plants (switchgrass) 11 years after plant cover conversion. We also assessed resource origin and availability (total organic carbon, 14C, dissolved organic carbon, specific UV absorbance, total nitrogen, total dissolved nitrogen) along the soil profiles to examine associations between soil chemical and biological parameters. Even though root biomass was higher and rooting depth was deeper under switchgrass than soy, resource availability and microbial growth parameters were generally similar between vegetation types. Instead, depth significantly influenced soil chemical and biological parameters. For example, resource availability, and total and relative active microbial biomass decreased with soil depth. Decreases in the relative active microbial biomass coincided with increased lag time (response time to external carbon inputs) along the soil profiles. Even at a depth of 210-240 cm, microbial communities were activated to grow by added resources within a day. Maximum specific growth rate decreased to a depth of 90 cm and then remained consistent in deeper layers. Our findings show that > 10 years of vegetation and rooting depth changes may not be long enough to alter microbial growth parameters, and suggest that at least a portion of the microbial community in deep soils can grow rapidly in response to added resources. Our study determined microbial growth parameters that can be used in microbially-explicit models to simulate carbon dynamics in deep soil layers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3