Intracellular Ca2+ channels initiate physiological glucose signaling in beta cells examined in situ

Author:

Postić Sandra,Sarikas Srdjan,Pfabe Johannes,Pohorec Viljem,Bombek Lidija Križančić,Sluga Nastja,Klemen Maša Skelin,Dolenšek Jurij,Korošak Dean,Stožer Andraž,Evans-Molina Carmella,Johnson James DORCID,Rupnik Marjan SlakORCID

Abstract

AbstractObjectiveInsulin release from pancreatic beta cells is driven by cytosolic [Ca2+]c oscillations of several different time scales that are primarily attributed to plasma membrane ion channel activity. However, the majority of past studies have been performed at supraphysiological glucose concentrations above 10 mM using electrophysiologic approaches that solely measure plasma membrane ion fluxes. The role of endoplasmic reticulum (ER) Ca2+ stores in glucose-stimulated Ca2+ signaling remains poorly understood.MethodsIn this study, we hypothesized new, brighter [Ca2+]c sensors coupled with high-resolution functional Ca2+ imaging could be used to test a previously unappreciated role for the ryanodine and IP3 intracellular Ca2+ release channels in [Ca2+]c oscillations stimulated by increases from 6 mM to 8 mM glucose.ResultsUsing mouse pancreas tissue slices exposed to physiological glucose increments, our results show that glucose-dependent activation of IP3 and ryanodine receptors produces two kinetically distinct forms of compound events involving calcium-induced Ca2+ release. Ca2+ release mediated by IP3 and ryanodine receptors was sufficient to generate Ca2+ oscillations and necessary for the response to physiological glucose, which could be initiated in the absence of Ca2+ influx across the plasma membrane through voltage-gated Ca2+ channels.ConclusionsIn aggregate, these data suggest that intracellular Ca2+ receptors play a key role in shaping glucose-dependent [Ca2+]c responses in pancreatic beta cells in situ. In our revised model, the primary role for plasma membrane Ca2+ influx at physiological glucose concentrations is to refill ER Ca2+ stores.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3