PodoCount: A robust, fully automated whole-slide podocyte quantification tool

Author:

Santo Briana A.,Govind Darshana,Daneshpajouhnejad Parnaz,Yang Xiaoping,Wang Xiaoxin X.,Myakala Komuraiah,Jones Bryce A.,Levi MosheORCID,Kopp Jeffrey B.,Niedernhofer Laura J.ORCID,Manthey David,Moon Kyung Chul,Han Seung SeokORCID,Rosenberg Avi Z.,Sarder Pinaki

Abstract

ABSTRACTBackgroundPodocyte depletion is an established indicator of glomerular injury and predicts clinical outcomes. The semi-quantitative nature of existing podocyte estimation methods or podometrics hinders incorporation of such analysis into experimental and clinical pathologic workflows. Computational image analysis offers a robust approach to automate podometrics through objective quantification of cell and tissue structure. Toward this goal, we developed PodoCount, a computational tool for quantitative analysis of podocytes, and validated the generalizability of the tool across a diverse dataset.MethodsPodocyte nuclei and glomerular boundaries were labeled in murine whole kidney sections, n = 135, from six disease models and human kidney biopsies, n = 45, from diabetic nephropathy (DN) patients. Digital whole slide images (WSIs) of tissues were then acquired. Classical image analysis was applied to obtain podocyte nuclear and glomerular morphometrics. Statistically significant morphometric features, which correlated with each murine disease, were identified. Engineered features were also assessed for their ability to predict outcomes in human DN. PodoCount has been disbursed for other researchers as an open-source, cloud-based computational tool.ResultsPodoCount offers highly accurate quantification of podocytes. Engineered podometric features were benchmarked against routine glomerular histopathology and were found to be significant predictors of disease diagnosis, proteinuria level, and clinical outcomes.ConclusionsPodoCount offers high quantification performance in diverse murine disease models as well as in human DN. Resultant podometric features offers significant correlation with associated metadata as well as outcome. Our cloud-based end-user tool will provide a standardized approach for podometric analysis from gigapixel size WSIs in basic research and clinical practice.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3