Abstract
AbstractNanopores comprise a versatile class of membrane proteins that carry out a range of key physiological functions and are increasingly developed for different biotechnological applications. Yet, a capacity to study and engineer protein nanopores by combinatorial means has so far been hampered by a lack of suitable assays that combine sufficient experimental resolution with throughput. Addressing this technological gap, the Functional Nanopore (FuN) screen now provides a quantitative and dynamic read-out of nanopore assembly and function in E. coli. The assay is based on genetically-encoded fluorescent protein sensors that resolve the nanopore-dependent influx of Ca2+ across the inner membrane of E. coli. Illustrating its versatile capacity, the FuN screen is first applied to dissect the molecular features that underlie the assembly and stability of nanopores formed by the S2168 holin. In a subsequent step, nanopores are engineered by recombining the transmembrane module of S2168 with different ring-shaped oligomeric protein structures that feature defined hexa-, hepta- and octameric geometries. Library screening highlights substantial plasticity in the ability of the S2168 transmembrane module to oligomerize in alternative geometries while the functional properties of the resultant nanopores can be fine-tuned through the identity of the connecting linkers. Overall, the FuN screen is anticipated to facilitate both fundamental studies and complex nanopore engineering endeavors with many potential applications in biomedicine, biotechnology and synthetic biology.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献