Generative AAV capsid diversification by latent interpolation

Author:

Sinai SamORCID,Jain Nina,Church George MORCID,Kelsic Eric DORCID

Abstract

SummaryAdeno-associated virus (AAV) capsids have shown clinical promise as delivery vectors for gene therapy. However, the high prevalence of pre-existing immunity against natural capsids poses a challenge for widespread treatment. The generation of diverse capsids that are potentially more capable of immune evasion is challenging because introducing multiple mutations often breaks capsid assembly. Here we target a representative, immunologically relevant 28-amino-acid segment of the AAV2 capsid and show that a low-complexity Variational Auto-encoder (VAE) can interpolate in sequence space to produce diverse and novel capsids capable of packaging their own genomes. We first train the VAE on a 564-sample Multiple-Sequence Alignment (MSA) of dependo-parvoviruses, and then further augment this dataset by adding 22,704 samples from a deep mutational exploration (DME) on the target region. In both cases the VAE generated viable variants with many mutations, which we validated experimentally. We propose that this simple approach can be used to optimize and diversify other proteins, as well as other capsid traits of interest for gene delivery.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing

2. Unified rational protein engineering with sequence-based deep representation learning;Nat. Methods,2019

3. End-to-End Differentiable Learning of Protein Structure;Cell Syst,2019

4. Brookes, D.H. , and Listgarten, J. (2018). Design by adaptive sampling.

5. Brookes, D. , Park, H. , and Listgarten, J. (2019). Conditioning by adaptive sampling for robust design. In Proceedings of the 36th International Conference on Machine Learning, K. Chaudhuri , and R. Salakhutdinov , eds. (PMLR), pp. 773–782.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3