DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug–target interactions

Author:

Hinnerichs TilmanORCID,Hoehndorf RobertORCID

Abstract

AbstractMotivationIn silico drug–target interaction (DTI) prediction is important for drug discovery and drug repurposing. Approaches to predict DTIs can proceed indirectly, top-down, using phenotypic effects of drugs to identify potential drug targets, or they can be direct, bottom-up and use molecular information to directly predict binding potentials. Both approaches can be combined with information about interaction networks.ResultsWe developed DTI-Voodoo as a computational method that combines molecular features and ontology-encoded phenotypic effects of drugs with protein–protein interaction networks, and uses a graph convolutional neural network to predict DTIs. We demonstrate that drug effect features can exploit information in the interaction network whereas molecular features do not. DTI-Voodoo is designed to predict candidate drugs for a given protein; we use this formulation to show that common DTI datasets contain intrinsic biases with major affects on performance evaluation and comparison of DTI prediction methods. Using a modified evaluation scheme, we demonstrate that DTI-Voodoo improves significantly over state of the art DTI prediction methods.AvailabilityDTI-Voodoo source code and data necessary to reproduce results are freely available at https://github.com/THinnerichs/DTI-VOODOO.Contacttilman.hinnerichs@kaust.edu.saSupplementary informationSupplementary data are available at https://github.com/THinnerichs/DTI-VOODOO.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Gene Ontology: tool for the unification of biology

2. Bianchi, F. M. , Grattarola, D. , Livi, L. , and Alippi, C. (2019). Graph neural networks with convolutional ARMA filters. CoRR, abs/1901.01343.

3. Drug Target Identification Using Side-Effect Similarity

4. The gene ontology resource: enriching a GOld mine;Nucleic Acids Research,2020

5. Chen, J. , Althagafi, A. , and Hoehndorf, R. (2020). Predicting candidate genes from phenotypes, functions and anatomical site of expression. Bioinformatics. advance access.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3