Caspase-dependent cleavage of DDX21 suppresses host innate immunity

Author:

Wu Wei,Qu Yang,Yu ShengqingORCID,Wang Sa,Yin Yuncong,Liu QinfangORCID,Meng Chunchun,Liao Ying,Rehman Zaib Ur,Tan Lei,Song Cuiping,Qiu Xusheng,Liu Weiwei,Ding Chan,Sun Yingjie

Abstract

AbstractDEAD (Glu-Asp-Ala-Glu)-box RNA helicases have been proven to contribute to antiviral innate immunity. DDX21 RNA helicase was identified as a nuclear protein involved in ribosomal RNA processing and RNA unwinding. DDX21 was also proved to be the scaffold protein in the complex of DDX1-DDX21-DHX36 which senses double strand RNA and initiates downstream innate immunity. Here, we identified that DDX21 undergoes caspase-dependent cleavage after virus infection and treatment with RNA/DNA ligands, especially for RNA virus and ligands. Caspase-3/6 cleave DDX21 at D126 and promotes its translocation from the nucleus to the cytoplasm in response to virus infection. The cytoplasmic cleaved DDX21 negatively regulates the IFN-β signaling pathway by suppressing the formation of DDX1-DDX21-DHX36 complex. Thus, our data identify DDX21 as a regulator of immune balance and most importantly uncover a potential role of DDX21 cleavage in the innate immunity response towards virus.ImportanceInnate immunity serves as the first barrier against virus infection. DEAD (Glu-Asp-Ala-Glu)-box RNA helicases, originally considered to be involved RNA processing and RNA unwinding, have been shown to play an important role in anti-viral innate immunity. The precise regulation of innate immunity is critical for the host because the aberrant production of cytokines leads to unexpected pathological consequences. Here, we identified DDX21 was cleaved at D126 by virus infection and treatment with RNA/DNA ligands via the caspase-3/6-dependent pathway. The cytoplasmic cleaved DDX21 negatively regulates the IFN-β signaling pathway by suppressing the formation of DDX1-DDX21-DHX36 complex. In sum, our data identify DDX21 as a regulator of immune balance and most importantly uncover a potential role of DDX21 cleavage in the innate immunity response towards virus.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3