Author:
Mohamed Weaam I.,Park Sophia L.,Rabl Julius,Leitner Alexander,Boehringer Daniel,Peter Matthias
Abstract
AbstractThe human GID (hGID) complex is an evolutionary conserved E3 ubiquitin ligase regulating diverse biological processes including glucose metabolism and cell cycle progression. However, the biochemical function and substrate recognition of the multi-subunit complex remains poorly understood. While the yeast GID complex recognizes Pro/N-end rule substrates via yeast Gid4, the human GID complex requires a WDR26/Gid7-dependent module to trigger proteasomal degradation of mammalian HBP1. Here, using biochemical assays, crosslinking-mass spectrometry and cryo-electron microscopy, we show that hGID unexpectedly engages two distinct modules for substrate recruitment, dependent on either WDR26 or GID4. WDR26 together with RanBP9 cooperate to ubiquitinate HBP1 in vitro, while GID4 is dispensable for this reaction. In contrast, GID4 functions as an adaptor for the substrate ZMYND19, which surprisingly lacks a Pro/N-end rule degron. GID4 substrate binding and ligase activity is regulated by ARMC8α, while the shorter ARMC8β isoform assembles into a stable hGID complex that is unable to recruit GID4. Cryo-EM reconstructions of these hGID complexes reveal the localization of WDR26 within a ring-like, tetrameric architecture and suggest that GID4 and WDR26/Gid7 utilize different, non-overlapping binding sites. Together, these data advance our mechanistic understanding of how the hGID complex recruits cognate substrates and provide insights into the regulation of its ligase activity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献