Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells

Author:

Aaron Nicole,Kraakman Michael J.,Zhou Qiuzhong,Liu Qiongming,Yang Jing,Liu Longhua,Yu Lexiang,Wang Liheng,He Ying,Fan Lihong,Hirakawa Hiroyuki,Ding Lei,Lo James C,Wang Weidong,Zhao BaohongORCID,Edward Guo X,Sun LeiORCID,Rosen Clifford J.,Qiang LiORCID

Abstract

ABSTRACTBackgroundBone marrow (BM) adipose tissue (BMAT) has been shown to be vital for regulating metabolism and maintaining skeletal homeostasis in the marrow niche. As a reflection of BM remodeling, BMAT is highly responsive to nutrient fluctuations, hormonal changes and metabolic disturbances such as obesity and diabetes mellitus. Expansion of BMAT has also been strongly associated with bone loss in mice and humans. However, the regulation of BM plasticity remains poorly understood, as does the mechanism that links changes in marrow adiposity with bone remodeling.MethodsUsing C57BL/6 mice as a model, we employed the bone-protected PPARγ constitutive deacetylation (2KR), Adipsin, and its downstream effector, C3, knockout mice. These mice were challenged to thiazolidinedione treatment, calorie restriction, or aging in order to induce bone loss and MAT expansion. Analysis of bone density and marrow adiposity was performed using a μCT scanner and by RNA analysis to assess adipocyte and osteoblast markers. For in vitro studies, primary bone marrow stromal cells (BMSCs) were isolated and subjected to osteoblastogenic or adipogenic differentiation or chemical treatment followed by morphological and molecular analyses. Clinical data was obtained from samples of a previous clinical trial of fasting and high calorie diet in healthy human volunteers.ResultsWe have shown that Adipsin is the most up-regulated adipokine during BMAT expansion in mice and humans, in a PPARγ acetylation-dependent manner. Ablation of Adipsin in mice specifically inhibited BMAT expansion but not peripheral adipose depots, and improved bone mass during calorie restriction, thiazolidinedione treatment, and aging. These effects were mediated through its downstream effector, complement component C3, to prime common progenitor cells toward adipogenesis rather than osteoblastogenesis through inhibiting Wnt/β- catenin signaling.ConclusionsAdipsin promotes new adipocyte formation and affects skeletal remodeling in the BM niche. Our study reveals a novel mechanism whereby the BM sustains its own plasticity through paracrine and endocrine actions of a unique adipokine.FundingThis work was supported by the National Institutes of Health T32DK007328 (NA), F31DK124926 (NA), R01DK121140 (JCL), R01AR068970 (BZ), R01AR071463 (BZ), R01DK112943 (LQ), and P01HL087123 (LQ).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3