Narrative Event Segmentation in the Cortical Reservoir

Author:

Dominey Peter FordORCID

Abstract

AbstractDuring continuous perception of movies or stories, awake humans display cortical activity patterns that reveal hierarchical segmentation of event structure. Sensory areas like auditory cortex display high frequency segmentation related to the stimulus, while semantic areas like posterior middle cortex display a lower frequency segmentation related to transitions between events (Baldassano et al. 2017). These hierarchical levels of segmentation are associated with different time constants for processing. Chien and Honey (2020) observed that when two groups of participants heard the same sentence in a narrative, preceded by different contexts, neural responses for the groups were initially different and then gradually aligned. The time constant for alignment followed the segmentation hierarchy: sensory cortices aligned most quickly, followed by mid-level regions, while some higher-order cortical regions took more than 10 seconds to align. These hierarchical segmentation phenomena can be considered in the context of processing related to comprehension. Uchida et al. (2021) recently described a model of discourse comprehension where word meanings are modeled by a language model pre-trained on a billion word corpus (Yamada et al 2020). During discourse comprehension, word meanings are continuously integrated in a recurrent cortical network. The model demonstrates novel discourse and inference processing, in part because of two fundamental characteristics: real-world event semantics are represented in the word embeddings, and these are integrated in a reservoir network which has an inherent gradient of functional time constants due to the recurrent connections. Here we demonstrate how this model displays hierarchical narrative event segmentation properties. The reservoir produces activation patterns that are segmented by the HMM of Baldassano et al (2017) in a manner that is comparable to that of humans. Context construction displays a continuum of time constants across reservoir neuron subset, while context forgetting has a fixed time constant across these subsets. Virtual areas formed by subgroups of reservoir neurons with faster time constants segmented with shorter events, while those with longer time constants preferred longer events. This neurocomputational recurrent neural network simulates narrative event processing as revealed by the fMRI event segmentation algorithm of Baldassano et al (2017), and provides a novel explanation of the asymmetry in narrative forgetting and construction observed by Chien and Honey (2020). The model extends the characterization of online integration processes in discourse to more extended narrative, and demonstrates how reservoir computing provides a useful model of cortical processing of narrative structure.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3