Functional analysis of deoxyhexose sugar utilization in Escherichia coli reveals fermentative metabolism under aerobic conditions

Author:

Millard Pierre,Pérochon Julien,Letisse FabienORCID

Abstract

ABSTRACTL-rhamnose and L-fucose are the two main 6-deoxyhexoses Escherichia coli can use as carbon and energy sources. Deoxyhexose metabolism leads to the formation of lactaldehyde whose fate depends on oxygen availability. Under anaerobic conditions, lactaldehyde is reduced to 1,2-propanediol whereas under aerobic condition, it should be oxidised into lactate and then channelled into the central metabolism. However, although this all-or-nothing view is accepted in the literature, it seems overly simplistic since propanediol is also reported to be present in the culture medium during aerobic growth on L-fucose. To clarify the functioning of 6-deoxyhexose sugar metabolism, a quantitative metabolic analysis was performed to determine extra- and intracellular fluxes in E. coli K-12 MG1655 (a laboratory strain) and in E. coli Nissle 1917 (a human commensal strain) during anaerobic and aerobic growth on L-rhamnose and L-fucose. As expected, lactaldehyde is fully reduced to 1,2-propanediol in anoxic conditions allowing complete reoxidation of the NADH produced by glyceraldehyde-3-phosphate-dehydrogenase. We also found that net ATP synthesis is ensured by acetate production. More surprisingly, lactaldehyde is also primarily reduced into 1,2-propanediol under aerobic conditions. For growth on L-fucose, 13C-metabolic flux analysis revealed a large excess of available energy, highlighting the need to better characterize ATP utilization processes. The probiotic E. coli Nissle 1917 strain exhibits similar metabolic traits, indicating that they are not the result of the K-12 strain’s prolonged laboratory use.IMPORTANCEE. coli’s ability to survive, grow and colonize the gastrointestinal tract stems from its use of partially digested food and hydrolysed glycosylated proteins (mucins) from the intestinal mucus layer as substrates. These include L-fucose and L-rhamnose, two 6-deoxyhexose sugars, whose catabolic pathways have been established by genetic and biochemical studies. However, the functioning of these pathways has only partially been elucidated. Our quantitative metabolic analysis provides a comprehensive picture of 6-deoxyhexose sugar metabolism in E. coli under anaerobic and aerobic conditions. We found that 1,2-propanediol is a major by-product under both conditions, revealing the key role of fermentative pathways in 6-deoxyhexose sugar metabolism. This metabolic trait is shared by both E. coli strains studied here, a laboratory strain and a probiotic strain. Our findings add to our understanding of E. coli’s metabolism and of its functioning in the bacterium’s natural environment.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Rhamnose in plants - from biosynthesis to diverse functions;Plant Science,2021

2. Preparative synthesis of GDP- -L-fucose by recombinant enzymes from enterobacterial sources

3. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments

4. Cheng CC , Duar RM , Lin X , Perez-Munoz ME , Tollenaar S , Oh J-H , van Pijkeren J-P , Li F , van Sinderen D , Gänzle MG , Walter J. 2020. Ecological Importance of Cross-Feeding of the Intermediate Metabolite 1,2-Propanediol between Bacterial Gut Symbionts. Appl Environ Microbiol 86.

5. Conway T , Cohen PS . 2015. Commensal and Pathogenic Escherichia coli Metabolism in the Gut. Microbiol Spectr 3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3