Transcriptomic Changes During Stage Progression of Mycosis Fungoides

Author:

Xiao MORCID,Hennessey DORCID,Iyer A,O’Keefe S,Zhang F,Sivanand A,Gniadecki RORCID

Abstract

AbstractBackgroundMycosis fungoides (MF) is the most common cutaneous T cell lymphoma, which in the early patch/plaque stages runs an indolent course. However, ~25% of MF patients develop skin tumors, a hallmark of progression to the advanced stage and associated with high mortality. The mechanisms involved in stage progression are poorly elucidated.MethodsWe performed whole-transcriptome and whole-exome sequencing of malignant MF cells from skin biopsies obtained by laser-capture microdissection. We compared three types of MF lesions: early-stage plaques (ESP, n=12), and plaques and tumors from patients in late-stage disease (late-stage plaques, LSP, n=10, and tumors, TMR, n=15). Gene Ontology (GO) and KEGG analysis were used to determine pathway changes specific for different lesions which we linked to the recurrent somatic mutations overrepresented in MF tumors.ResultsThe key upregulated pathways during stage progression were those related to cell proliferation and survival (MEK/ERK, Akt-mTOR), Th2/Th9 signaling (IL4, STAT3, STAT5, STAT6), meiomitosis (CT45A1, CT45A3, STAG3, GTSF1, and REC8) and DNA repair (PARP1, MYCN, OGG1). Principal coordinate clustering of the transcriptome revealed extensive gene expression differences between early (ESP) and advanced-stage lesions (LSP and TMR). LSP and TMR showed remarkable similarities at the level of the transcriptome, which we interpreted as evidence of cell percolation between lesions via hematogenous self-seeding.ConclusionStage progression in MF is associated with Th2/Th9 polarization of malignant cells, activation of proliferation, survival, as well as increased genomic instability. Global transcriptomic changes in multiple lesions are probably caused by hematogenous cell percolation between discrete skin lesions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3