Characterization of light penetration through brain tissue, for optogenetic stimulation

Author:

Johnson Emily L.,Walsh Darren,Hutchings Frances,Palmini Rolando BerlinguerORCID,Ponon Nikhil,O’Neill Anthony,Jackson Andrew,Degenaar Patrick,Trevelyan Andrew J.ORCID

Abstract

AbstractThe recent development of optogenetic tools, to manipulate neuronal activity using light, provides opportunities for novel brain-machine interface (BMI) control systems for treating neurological conditions. An issue of critical importance, therefore, is how well light penetrates through brain tissue. We took two different approaches to estimate light penetration through rodent brain tissue. The first employed so-called “nucleated patches” from cells expressing the light-activated membrane channel, channelrhodopsin (ChR2). By recording light-activated currents, we used these nucleated patches as extremely sensitive, microscopic, biological light-meters, to measure light penetration through 300-700µm thick slices of rodent neocortical tissue. The nucleated patch method indicates that the effective illumination drops off with increasing tissue thickness, corresponding to a space constant of 317µm (95% confidence interval between 248-441µm). We compared this with measurements taken from directly visualizing the illumination of brain tissue, orthogonal to the direction of the light. This yielded a contour map of reduced illumination with distance, which along the direction of light delivery, had a space constant, τ 453µm. This yields a lower extinction coefficient, µe (the reciprocal of τ, ∼3mm-1) than previous estimates, implying better light penetration from LED sources than these earlier studies suggest.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3