A strategy for mapping biophysical to abstract neuronal network models applied to primary visual cortex

Author:

Chizhov Anton V.ORCID,Graham Lyle J.

Abstract

AbstractA fundamental challenge for the theoretical study of neuronal networks is to make the link between complex biophysical models based directly on experimental data, to progressively simpler mathematical models that allow the derivation of general operating principles. We present a strategy that successively maps a relatively detailed biophysical population model, comprising conductance-based Hodgkin-Huxley type neuron models with connectivity rules derived from anatomical data, to various representations with fewer parameters, finishing with a firing rate network model that permits analysis. We apply this methodology to primary visual cortex of higher mammals, focusing on the functional property of stimulus orientation selectivity of receptive fields of individual neurons. The mapping produces compact expressions for the parameters of the abstract model that clearly identify the impact of specific electrophysiological and anatomical parameters on the analytical results, in particular as manifested by specific functional signatures of visual cortex, including input-output sharpening, conductance invariance, virtual rotation and the tilt after effect. Importantly, qualitative differences between model behaviours point out consequences of various simplifications. The strategy may be applied to other neuronal systems with appropriate modifications.Author summaryA hierarchy of theoretical approaches to study a neuronal network depends on a tradeoff between biological fidelity and mathematical tractibility. Biophysically-detailed models consider cellular mechanisms and anatomically defined synaptic circuits, but are often too complex to reveal insights into fundamental principles. In contrast, increasingly abstract reduced models facilitate analytical insights. To better ground the latter to the underlying biology, we describe a systematic procedure to move across the model hierarchy that allows understanding how changes in biological parameters - physiological, pathophysiological, or because of new data - impact the behaviour of the network. We apply this approach to mammalian primary visual cortex, and examine how the different models in the hierarchy reproduce functional signatures of this area, in particular the tuning of neurons to the orientation of a visual stimulus. Our work provides a navigation of the complex parameter space of neural network models faithful to biology, as well as highlighting how simplifications made for mathematical convenience can fundamentally change their behaviour.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Theory of orientation tuning in visual cortex.

2. Hansel D , Sompolinsky H. Modeling feature selectivity in local cortical circuits. In: Methods in Neuronal Modeling: from Synapses to Networks. 2nd ed. MIT Press; 1997. p. 499–567.

3. Mexican hats and pinwheels in visual cortex

4. Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back

5. Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3