PaIRKAT: A pathway integrated regression-based kernel association test with applications to metabolomics and COPD phenotypes

Author:

Carpenter Charlie M.,Zhang Weiming,Gillenwater Lucas,Severn Cameron,Ghosh Tusharkanti,Bowler Russel,Kechris Katerina,Ghosh Debashis

Abstract

AbstractHigh-throughput data such as metabolomics, genomics, transcriptomics, and proteomics have become familiar data types within the “-omics” family. For this work, we focus on subsets that interact with one another and represent these “pathways” as graphs. Observed pathways often have disjoint components, i.e. nodes or sets of nodes (metabolites, etc.) not connected to any other within the pathway which notably lessens testing power. In this paper we propose the Pathway Integrated Regression-based Kernel Association Test (PaIRKAT), a new kernel machine regression method for incorporating known pathway information into the semi-parametric kernel regression framework. This paper also contributes an application of a graph kernel regularization method for overcoming disconnected pathways. By incorporating a regularized or “smoothed” graph into a score test, PaIRKAT is capable of providing more powerful tests for associations between biological pathways and phenotypes of interest and will be helpful in identifying novel pathways for targeted clinical research. We evaluate this method through several simulation studies and an application to real metabolomics data from the COPDGene study. Our simulation studies illustrate the robustness of this method to incorrect and incomplete pathway knowledge, and the real data analysis shows meaningful improvements of testing power in pathways. PaIRKAT was developed for application to metabolomic pathway data, but the techniques are easily generalizable to other data sources with a graph-like structure.Author SummaryPaIRKAT is a tool for improving testing power on high dimensional data by including graph topography in the kernel machine regression setting. Studies on high dimensional data can struggle to include the complex relationships between variables. The semi-parametric kernel machine regression model is a powerful tool for capturing these types of relationships. They provide a framework for testing for relationships between outcomes of interest and high dimensional data such as metabolomic, genomic, or proteomic pathways. Our paper proposes PaIRKAT, a method for including known biological connections between high dimensional variables by representing them as edges of ‘graphs’ or ‘networks.’ It is common for nodes (e.g. metabolites) to be disconnected from all others within the graph, which leads to meaningful decreases in testing power whether or not the graph information is included. We include a graph regularization or ‘smoothing’ approach for managing this issue. We demonstrate the benefits of this approach through simulation studies and an application to the metabolomic data from the COPDGene study.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3