Abstract
AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes TMPRSS2 receptor to enter target human cells and subsequently causes coronavirus disease 19 (COVID-19). TMPRSS2 belongs to the type II serine proteases of subfamily TMPRSS, which is characterized by the presence of the serine-protease domain. TMPRSS4 is another TMPRSS member, which has a domain architecture similar to TMPRSS2. TMPRSS2 and TMPRSS4 have been shown to be involved in SARS-CoV-2 infection. However, their normal physiological roles have not been explored in detail. In this study, we analyzed the amino acid sequences and predicted 3D structures of TMPRSS2 and TMPRSS4 to understand their functional aspects at the protein domain level. Our results suggest that these proteins are likely to have common functions based on their conserved domain organization. Furthermore, we show that the predicted 3D structure of their serine protease domain has significant similarity to that of plasminogen which dissolves blood clot, and of other blood coagulation related proteins. Additionally, molecular docking analyses of inhibitors of four blood coagulation and anticoagulation factors show the same high specificity to TMPRSS2 and TMPRSS4 3D structures. Hence, our observations are consistent with the blood coagulopathy observed in COVID-19 patients and their predicted functions based on the sequence and structural analyses offer avenues to understand better and explore therapeutic approaches for this disease.
Publisher
Cold Spring Harbor Laboratory