A deep learning approach to neurite prediction in high throughput fluorescence imaging

Author:

Barch Mariya,Cobb Melanie M.,Tokuno Zachary,Leddy Jen,Prenton Keili,Manubens-Gil Linus,Bellini Nicole,Lam Stephanie,Kaye Julia,Dierssen MaraORCID,Finkbeiner Steven

Abstract

AbstractChanges to neuronal morphology and loss of neurites and synaptic connections can be an important early indicator of neurological diseases, and a pathognomonic sign of neurodevelopmental disorders. These changes are typically detectable by microscopy in cell culture or histological samples, but quantification can be challenging. The neurites extending from cell soma can be quite thin, dim, overlapping and complex, making them laborious to trace manually and difficult to annotate and quantify computationally or automatically. Moreover, the tools available to aid this aim are limited in their capacity to generalize to high throughput image acquisition such as time-lapse or longitudinal imaging, where imaging conditions can change dramatically over the course of the experiment. In order to facilitate neurite quantification, we developed a deep learning (DL) neurite annotation prediction algorithm (NAPA) to predict the structure and length of neurites. NAPA overcomes experimental variation inherent to fluorescence imaging by learning more broader features that are important for neurite recognition. Based on a dataset with partial annotation, NAPA generated predictions on several unannotated datasets, and was able to capture differences between disease and control conditions. We also defined a sequence of steps to generate custom models with a small number of annotation inputs, and extended the predictions to a 3D tissue sample and longitudinal imaging. With this algorithm we developed an approach to quantify neurites with an accuracy that nears and sometimes exceeds human curation, in 1/100th of the time. This approach makes accurate analysis of large or longitudinal datasets feasible across a broad range of datasets.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep learning approach for automation in neurite tracing and cell size estimation from differential contrast images under healthy and hypoxic condition;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3