Abstract
AbstractObjectiveSeptic acute kidney injury (AKI) is an important cause of death in patients with sepsis. This study sought to explore the function of the long noncoding RNA, urothelial carcinoma associated 1 (lncRNA-UCA1), in septic AKI and determine the underlying molecular mechanism.MethodsHK-2 cells were treated with lipopolysaccharide (LPS) to establish an in vitro model of septic AKI. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of lncRNA-UCA1. CCK-8 assay was used to detect the viability of HK-2 cells. Western blotting was utilized to examine protein expression. The contents of SOD, GSH, MDA, and ROS were determined using commercial kits. The apoptosis rate was calculated using TUNEL staining and flow cytometry.ResultsLncRNA-UCA1 was down-regulated in LPS-treated HK-2 cells. LPS significantly reduced the content of SOD and GSH in HK-2 cells, increased the production of MDA and ROS, and led to an increase in the rate of apoptosis. However, overexpression of lncRNA-UCA1 protected HK-2 cells from oxidative stress and apoptosis. Furthermore, LPS induced endoplasmic reticulum (ER) stress in HK-2 cells, which was inhibited by overexpression of lncRNA-UCA1.ConclusionOverexpression of lncRNA-UCA1 inhibited LPS-induced oxidative stress and apoptosis of HK-2 cells by suppressing ER stress.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献