Target identification of drug candidates with machine-learning algorithms: how choosing negative examples for training

Author:

Najm MatthieuORCID,Azencott Chloé-AgatheORCID,Playe BenoitORCID,Stoven VéroniqueORCID

Abstract

Abstract(1) Background:Identification of hit molecules protein targets is essential in the drug discovery process. Target prediction with machine-learning algorithms can help accelerate this search, limiting the number of required experiments. However, Drug-Target Interactions databases used for training present high statistical bias, leading to a high number of false positive predicted targets, thus increasing time and cost of experimental validation campaigns. (2) Methods: To minimize the number of false positive predicted proteins, we propose a new scheme for choosing negative examples, so that each protein and each drug appears an equal number of times in positive and negative examples. We artificially reproduce the process of target identification for 3 particular drugs, and more globally for 200 approved drugs. (3) Results: For the detailed 3 drugs examples, and for the larger set of 200 drugs, training with the proposed scheme for the choice of negative examples improved target prediction results: the average number of false positive among the top ranked predicted targets decreased and overall the rank of the true targets was improved. (4) Conclusion: Our method enables to correct databases statistical bias and reduces the number of false positive predictions, and therefore the number of useless experiments potentially undertaken.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3