Decellularized Articular Cartilage Microparticles for Expansion of Mesenchymal Stem Cells and Zonal Regeneration of Articular Cartilage

Author:

Sepahvandi Azadeh,Kader Safaa Ibrahim,Monavarian Mehri,Madormo Victor Anthony,Jabbari EsmaielORCID

Abstract

AbstractIntroductionThe objective was to create multilayer cellular constructs using fetal or adult, decellularized articular cartilage in particulate form as microcarriers for expansion and fusion of mesenchymal stem cells (MSCs) to regenerate the stratified structure of articular cartilage.MethodsPorous microparticles (CMPs) generated from decellularized fetal or adult bovine articular cartilage were used as microcarriers for expansion of human MSCs. The CMP expanded MSCs (CMP-MSCs) were used to generate injectable hydrogels or preformed multilayer constructs for articular cartilage regeneration. In the injectable approach, CMP-MSCs were suspended in alginate gel, crosslinked with calcium chloride, and incubated in chondrogenic medium to generate an injectable regenerative construct. In the preformed approach, fetal or adult CMP-MSCs were suspended in a culture medium, allowed to settle sequentially by the force of gravity, and fused by incubation in chondrogenic medium to generate multilayer cell sheets. The constructs were characterized with respect to compressive modulus, cellularity, and expression of chondrogenic markers.ResultsHuman MSCs expanded on fetal or adult CMPs in basal medium maintained the expression of mesenchymal markers. The injectable CMP-MSCs hydrogels had significantly higher expression of chondrogenic markers and compressive modulus after four weeks incubation in chondrogenic medium compared to MSCs directly encapsulated in alginate gel; preformed CMP-MSCs cell sheets had significantly higher compressive modulus and expression of chondrogenic markers compared to MSCs in the pellet culture.ConclusionThe preformed cell sheet approach is potentially useful for creating multilayer constructs by sequential gravitational settling of CMP-MSCs to mimic the stratified structure of articular cartilage.Insight, Innovation, IntegrationThis work described a novel approach to recreate the zonal structure of articular cartilage. Human MSCs were expanded on porous microcarrier beads generated from decellularized fetal or adult bovine articular cartilage. The cell-seeded microbeads were fused by gravitational settling to form mono- or bi-layer cell sheets. The cell sheets were cultured in chondrogenic medium to regenerate the articular cartilage tissue. The in vitro regenerated tissue had higher compressive modulus and expression of chondrogenic markers compared to the MSC pellet culture.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Cause-specific mortality in osteoarthritis of peripheral joints;Osteoarthritis and Cartilage,2019

2. Osteoarthritis and the risk of cardiovascular disease: a meta-analysis of observational studies;Scientific Reports,2016

3. Injectable hydrogels for cartilage tissue engineering;Topics in Tissue Engineering,2003

4. Sargus-Patino C. Alginate hydrogel as a three-dimensional extracellular matrix for in vitro models of development. Biological systems engineering, dissertations, theses, and student research. U. Nebraska Lincoln. 2013:37. https://digitalcommons.unl.edu/biosysengdiss/37

5. Clinical Cartilage Restoration: Evolution and Overview

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3