Diaphragm muscle fibrosis involves changes in collagen organization with mechanical implications in Duchenne Muscular Dystrophy

Author:

Sahani Ridhi,Wallace C. Hunter,Jones Brian K.,Blemker Silvia S.

Abstract

AbstractIn Duchenne muscular dystrophy (DMD), diaphragm muscle dysfunction results in respiratory insufficiency, a leading cause of death in patients. Increased muscle stiffness occurs with buildup of fibrotic tissue, characterized by excessive accumulation of extracellular matrix (ECM) components such as collagen. However, changes in mechanical properties are not explained by collagen amount alone and we must consider the complex structure and mechanics of fibrotic tissue. The goals of our study were to (1) determine if and how collagen organization changes with the progression of DMD in diaphragm muscle tissue, and (2) predict how collagen organization influences the mechanical properties of ECM. We first visualized collagen structure with scanning electron microscopy (SEM) images and then developed an analysis framework to quantify collagen organization and generate image-based finite-element models. The image analysis revealed significant age- and disease-dependent increases in collagen fiber straightness and alignment, ranging from 4.7 to 13.4%, but collagen fibers retained a transverse orientation relative to muscle fibers. The mechanical models predicted significant age- and disease-dependent increases in transverse effective stiffness and average stress, ranging from 8.8 to 12.4%. Additionally, both healthy and diseased models revealed an increase in transverse stiffness relative to longitudinal stiffness, with significant age- and disease-dependent increases in the ratio of transverse to longitudinal stiffness, ranging from 19.7 to 24.5%. This study revealed changes in diaphragm ECM structure and mechanics during the progression of disease in themdxmuscular dystrophy mouse phenotype, highlighting the need to consider the role of collagen organization on diaphragm muscle function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3