Perturbative formulation of general continuous-time Markov model of sequence evolution via insertions/deletions, Part II: Perturbation analyses

Author:

Ezawa Kiyoshi,Graur Dan,Landan Giddy

Abstract

AbstractBackgroundInsertions and deletions (indels) account for more nucleotide differences between two related DNA sequences than substitutions do, and thus it is imperative to develop a stochastic evolutionary model that enables us to reliably calculate the probability of the sequence evolution through indel processes. In a separate paper (Ezawa, Graur and Landan 2015a), we established a theoretical basis of our ab initio perturbative formulation of a genuine evolutionary model, more specifically, a continuous-time Markov model of the evolution of an entire sequence via insertions and deletions. And we showed that, under some conditions, the ab initio probability of an alignment can be factorized into the product of an overall factor and contributions from regions (or local alignments) separated by gapless columns.ResultsThis paper describes how our ab initio perturbative formulation can be concretely used to approximately calculate the probabilities of all types of local pairwise alignments (PWAs) and some typical types of local multiple sequence alignments (MSAs). For each local alignment type, we calculated the fewest-indel contribution and the next-fewest-indel contribution to its probability, and we compared them under various conditions. We also derived a system of integral equations that can be numerically solved to give “exact solutions” for some common types of local PWAs. And we compared the obtained “exact solutions” with the fewest-indel contributions. The results indicated that even the fewest-indel terms alone can quite accurately approximate the probabilities of local alignments, as long as the segments and the branches in the tree are of modest lengths. Moreover, in the light of our formulation, we examined parameter regions where other indel models can safely approximate the correct evolutionary probabilities. The analyses also suggested some modifications necessary for these models to improve the accuracy of their probability estimations.ConclusionsAt least under modest conditions, our ab initio perturbative formulation can quite accurately calculate alignment probabilities under biologically realistic indel models. It also provides a sound reference point that other indel models can be compared to. [This paper and three other papers (Ezawa, Graur and Landan 2015a,b,c) describe a series of our efforts to develop, apply, and extend the ab initio perturbative formulation of a general continuous-time Markov model of indels.]

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3