Transcriptomic Profiling of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Over Time

Author:

Lidgerwood Grace E.ORCID,Senabouth AnneORCID,Smith-Anttila Casey J.A.ORCID,Gnanasambandapillai VikkitharanORCID,Kaczorowski Dominik C.ORCID,Amann-Zalcenstein DanielaORCID,Fletcher Erica L.ORCID,Naik Shalin H.ORCID,Hewitt Alex W.ORCID,Powell Joseph E.ORCID,Pébay AliceORCID

Abstract

AbstractHuman pluripotent stem cell (hPSC)-derived progenies are immature versions of cells, presenting a potential limitation to the accurate modelling of disease associated with maturity or age. Hence, it is important to characterise how closely cells used in culture resemble their native counterparts. In order to select appropriate points in time for RPE cultures to reflect native counterparts, we characterised the transcriptomic profiles of hPSC-derived retinal pigment epithelium (RPE) cells from 1- and 12-month cultures. We differentiated the human embryonic stem cell line H9 into RPE cells, performed single cell RNA-sequencing of a total of 16,576 cells, and analysed the resulting data to assess the molecular changes of RPE cells across these two culture time points. Our results indicate the stability of the RPE transcriptomic signature, with no evidence of an epithelial – mesenchymal transition, and with maturing populations of RPE observed with time in culture. Assessment of gene ontology pathways revealed that as cultures age, RPE cells upregulate expression of genes involved in metal binding and antioxidant functions. This might reflect an increased ability to handle oxidative stress as cells mature. Comparison with native human RPE data confirmed a maturing transcriptional profile of RPE cells in culture. These results suggest that in vitro long-term culture of RPE cells allow the modelling of specific phenotypes observed in native mature tissue. Our work highlights the transcriptional landscape of hPSC-derived RPE as they age in culture, which provides a reference for native and patient-samples to be benchmarked against.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3