Suppression of DSB Formation by Polβ in Active DNA Demethylation is Required for Postnatal Hippocampal Development

Author:

Uyeda Akiko,Onishi Kohei,Hirayama Teruyoshi,Hattori Satoko,Miyakawa Tsuyoshi,Yagi Takeshi,Yamamoto Nobuhiko,Sugo Noriyuki

Abstract

AbstractGenome stability is essential for brain development and function. However, the contribution of DNA repair to genome stability in neurons remains elusive. Here, we demonstrate that the base excision repair protein Polβ is involved in hippocampal neuronal differentiation via a TET-mediated active DNA demethylation during early postnatal stages. Polβ deficiency induced extensive DNA double-strand breaks (DSBs) in hippocampal neurons, and a lesser extent in cortical neurons, during a period in which decreased levels of 5-methylcytosine were observed in genomic DNA. Inhibition of the hydroxylation of 5-methylcytosine by microRNAs miR29a/b-1 expression diminished DSB formation. Conversely, its induction by TET1 overexpression increased DSBs. The damaged hippocampal neurons exhibited aberrant neuronal gene expression profiles and dendrite formation. Behavioral analyses revealed impaired spatial learning and memory in adulthood. Thus, Polβ maintains genome stability in the active DNA demethylation that occurs during postnatal neuronal development, thereby contributing to differentiation and subsequent behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3