Perturbation of PTEN-PI3K/AKT Signalling Impaired Autophagy Modulation in Dystrophin-Deficient Myoblasts

Author:

Dain Yazid Muhammad,Smith Janet

Abstract

AbstractAlteration of single protein regulation has given a massive implication in Muscular Dystrophy pathogenesis. Herein, we investigated the contribution of defected dystrophin that has impaired PI3K/Akt signalling and subsequently reduced autophagy in dystrophin-deficient myoblasts. In this study, dfd13 (dystrophin-deficient) and C2C12 (non-dystrophic) myoblasts were cultured in low mitogen condition for 10 days to induce differentiation. Analyses of protein expression has been done by using immunoblot technique, immunofluorescence and flow cytometry. In our myoblasts differentiation system, the dfd13 myoblasts did not achieved terminal differentiation as fewer myotube formation and fast-myosin heavy chain expression almost not detected. Immunoblot analysis showed that PTEN expression is profoundly increased in dfd13 myoblasts throughout the differentiation day. As a result, the PI3K activity is decreased and has caused serine/threonine kinase Akt inactivation. Both residues; Thr308 and Ser473, on Akt were found not phosphorylated. The mTOR activation by Ser2448 phosphorylation was decreased indicates an impairment for raptor and rictor binding. Unable to form complexes; mTORC1 target protein, p70S6K1 activation was found reduced at the same time explained un-phosphorylated-Akt at Ser473 by rictor-mTORC2. As one of Akt downstream protein, transcription factor FoxO3 regulation was found impaired as it was highly expressed and highly mainly localised in the nucleus in dfd13 towards the end of the differentiation day. This occurrence has caused higher activation of autophagy related genes; Beclin1, Atg5, Atg7, in dfd13 myoblasts. Autophagosome formation was increased as LC3B-I/II showed accumulation upon differentiation. However, ratio of LC3B lipidation and autophagic flux were shown decreased which exhibited dystrophic features. As a conclusion, destabilisation of plasma membrane owing to dystrophin mutation has caused the alteration of plasma membrane protein regulation particularly PTEN-PI3K, thus impaired autophagy modulation that critical for myoblasts development.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Dystrophin: The protein product of the duchenne muscular dystrophy locus

2. On Granular Degeneration of the Voluntary Muscles;Med Chir Trans,1866

3. ON THE CLASSIFICATION, NATURAL HISTORY AND TREATMENT OF THE MYOPATHIES

4. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation

5. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy;Acta Myol,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3