How to Interpret an Anonymous Bacterial Genome: Machine Learning Approach to Gene Identification

Author:

Hayes William S.,Borodovsky Mark

Abstract

In this report we address the problem of accurate statistical modeling of DNA sequences, either coding or noncoding, for a bacterial species whose genome (or a large portion) was sequenced but not yet characterized experimentally. Availability of these models is critical for successful solution of the genome annotation task by statistical methods of gene finding. We present the method, GeneMark-Genesis, which learns the parameters of Markov models of protein-coding and noncoding regions from anonymous bacterial genomic sequence. These models are subsequently used in the GeneMark and GeneMark.hmm gene-finding programs. Although there is basically one model of a noncoding region for a given genome, several models of protein-coding region are automatically obtained by GeneMark-Genesis. The diversity of protein-coding models reflects the diversity of oligonucleotide compositions, particularly the diversity of codon usage strategies observed in genes from one and the same genome. In the simplest and the most important case, there are just two gene models—typical and atypical ones. We show that the atypical model allows one to predict genes that escape identification by the typical model. Many genes predicted by the atypical model appear to be horizontally transferred genes. The early versions of GeneMark-Genesis were used for annotating the genomes of Methanoccocus jannaschii and Helicobacter pylori. We report the results of accuracy testing of the full-scale version of GeneMark-Genesis on 10 completely sequenced bacterial genomes. Interestingly, the GeneMark.hmm program that employed the typical and atypical models defined by GeneMark-Genesis was able to predict 683 new atypical genes with 176 of them confirmed by similarity search.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Reference33 articles.

1. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

2. The Complete Genome Sequence of Escherichia coli K-12

3. GeneMark: Parallel gene recognition for both DNA strands.;Borodovsky;Comp. Chem.,1993

4. Statistical features in the Escherichia coli genome functional primary structure. II. Non-homogeneous Markov chains.;Borodovsky;Mol. Biol.,1986

5. Statistical features in the E. coli genome functional primary structure. III. Computer recognition of protein coding regions.;Mol. Biol.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3