A mutant bacteriophage evolved to infect resistant bacteria gained a broader host range

Author:

Habusha Michal,Tzipilevich Elhanan,Ben-Yehuda Sigal

Abstract

SummaryBacteriophages (phages) are the most abundant entities in nature, yet little is known about their capacity to acquire new hosts and invade new niches. By exploiting the Gram positive soil bacteriumBacillus subtilis(B. subtilis) and its lytic phage SPO1 as a model, we followed the co-evolution of bacteria and phages. After infection, phage resistant bacteria were readily isolated. These bacteria were defective in production of glycosylated wall teichoic acid (TA) polymers, served as SPO1 receptor. Subsequently, a SPO1 mutant phage that could infect the resistant bacteria evolved. The emerging phage contained mutations in two genes, encoding the baseplate and fibers required for host attachment. Remarkably, the mutant phage gained the capacity to infect non-hostBacillusspecies that are not infected by the wild type phage. We provide evidence that the evolved phage lost its dependency on the species specific glycosylation pattern of TA polymers. Instead, the mutant phage gained the capacity to directly adhere to the TA backbone, conserved among different species, thereby crossing the species barrier.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3