Homology-based loop modelling yields more complete crystallographic protein structures

Author:

van Beusekom BartORCID,Joosten Krista,Hekkelman Maarten L.,Joosten Robbie P.ORCID,Perrakis AnastassisORCID

Abstract

AbstractInherent protein flexibility, poor or low-resolution diffraction data, or poor electron density maps, often inhibit building complete structural models during X-ray structure determination. However, advances in crystallographic refinement and model building nowadays often allow to complete previously missing parts. Here, we present algorithms that identify regions missing in a certain model but present in homologous structures in the Protein Data Bank (PDB), and “graft” these regions of interest. These new regions are refined and validated in a fully automated procedure. Including these developments in our PDB-REDO pipeline, allowed to build 24,962 missing loops in the PDB. The models and the automated procedures are publically available through the PDB-REDO databank and web server (https://pdb-redo.eu). More complete protein structure models enable a higher quality public archive, but also a better understanding of protein function, better comparison between homologous structures, and more complete data mining in structural bioinformatics projects.SynopsisThousands of missing regions in existing protein structure models are completed using new methods based on homology.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3