Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats

Author:

Li Xiaoli,Jin Xuejiao,Sharma Sushma,Liu Xiaojing,Zhang Jiaxin,Niu Yanling,Li Jiani,Li ZhenORCID,Zhang Jingjing,Cao Qinhong,Liu Beidong,Lou HuiqiangORCID

Abstract

AbstractThe S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. DeletingMCK1sensitizesdun1Δ to hydroxyurea (HU) reminiscent ofmec1Δ orrad53Δ. As a kinase at the downstream of Rad53, Mck1 does not participate in the post-translational regulation of RNR as Dun1 does, but Mck1 can release the Crt1 repressor from the promoters ofRNR2/3/4by phosphorylation. Meanwhile, Hug1, an Rnr2 inhibitor, is induced to fine-tune the dNTP levels. When cells suffer a more severe threat, Mck1 can inhibit the transcription ofHUG1. Importantly, only a combined deletion ofHUG1andCRT1, can confer a dramatic boost of dNTP levels and the survival ofmck1Δdun1Δ ormec1Δ cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis.Author SummaryThe appropriate amount and balance of four dNTPs are crucial for all cells correctly copying and passing on their genetic material generation by generation. Eukaryotes have developed an alert and response system to deal with the disturbance. Here, we uncovered a second-level effector branch. It is activated by the upstream surveillance kinase cascade, which can induce the expression of dNTP-producing enzymes. It can also reduce the inhibitor of these enzymes to further boost their activity according to the degrees of threats. These findings suggest a multi-level response system to guarantee dNTP supply, which is essential to maintain genetic stability under various environmental challenges.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3