Measuring the Importance of Vertices in the Weighted Human Disease Network

Author:

Almasi Seyed Mehrzad,Hu TingORCID

Abstract

AbstractMany human genetic disorders and diseases are known to be related to each other through frequently observed co-occurrences. Studying the correlations among multiple diseases provides an important avenue to better understand the common genetic background of diseases and to help develop new drugs that can treat multiple diseases. Meanwhile, network science has seen increasing applications on modeling complex biological systems, and can be a powerful tool to elucidate the correlations of multiple human diseases. In this article, known disease-gene associations were represented using a weighted bipartite network. We extracted a weighted human diseases network from such a bipartite network to show the correlations of diseases. Subsequently, we proposed a new centrality measurement for the weighted human disease network in order to quantify the importance of diseases. Using our centrality measurement to quantify the importance of vertices in the weighted human disease network, we were able to find a set of most central diseases. By investigating the 30 top diseases and their most correlated neighbors in the network, we identified disease linkages including known disease pairs and novel findings. Our research helps better understand the common genetic origin of human diseases and suggests top diseases that likely induce other related diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3