Valection: Design Optimization for Validation and Verification Studies

Author:

Cooper Christopher I.,Yao Delia,Sendorek Dorota H.,Yamaguchi Takafumi N.,P’ng Christine,Caloian Cristian,Fraser Michael,Ellrott Kyle,Margolin Adam A.,Bristow Robert G.,Stuart Joshua M.,Boutros Paul C.,

Abstract

AbstractBackgroundPlatform-specific error profiles necessitate confirmatory studies where predictions made on data generated using one technology are additionally verified by processing the same samples on an orthogonal technology. In disciplines that rely heavily on high-throughput data generation, such as genomics, reducing the impact of false positive and false negative rates in results is a top priority. However, verifying all predictions can be costly and redundant, and testing a subset of findings is often used to estimate the true error profile. To determine how to create subsets of predictions for validation that maximize inference of global error profiles, we developed Valection, a software program that implements multiple strategies for the selection of verification candidates.ResultsTo evaluate these selection strategies, we obtained 261 sets of somatic mutation calls from a single-nucleotide variant caller benchmarking challenge where 21 teams competed on whole-genome sequencing datasets of three computationally-simulated tumours. By using synthetic data, we had complete ground truth of the tumours’ mutations and, therefore, we were able to accurately determine how estimates from the selected subset of verification candidates compared to the complete prediction set. We found that selection strategy performance depends on several verification study characteristics. In particular the verification budget of the experiment (i.e. how many candidates can be selected) is shown to influence estimates.ConclusionsThe Valection framework is flexible, allowing for the implementation of additional selection algorithms in the future. Its applicability extends to any discipline that relies on experimental verification and will benefit from the optimization of verification candidate selection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. valection: Sampler for Verification Studies;CRAN: Contributed Packages;2018-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3