Author:
Strunz Maximilian,Simon Lukas M.,Ansari Meshal,Mattner Laura F.,Angelidis Ilias,Mayr Christoph H.,Kathiriya Jaymin,Yee Min,Ogar Paulina,Sengupta Arunima,Kukhtevich Igor,Schneider Robert,Zhao Zhongming,Neumann Jens H.L.,Behr Jürgen,Voss Carola,Stöger Tobias,Lehmann Mareike,Königshoff Melanie,Burgstaller Gerald,O’Reilly Michael,Chapman Harold A.,Theis Fabian J.,Schiller Herbert B.
Abstract
Lung injury activates quiescent stem and progenitor cells to regenerate alveolar structures. The sequence and coordination of transcriptional programs during this process has largely remained elusive. Using single cell RNA-seq, we first generated a whole-organ bird’s-eye view on cellular dynamics and cell-cell communication networks during mouse lung regeneration from ∼30,000 cells at six timepoints. We discovered an injury-specific progenitor cell state characterized by Krt8 in flat epithelial cells covering alveolar surfaces. The number of these cells peaked during fibrogenesis in independent mouse models, as well as in human acute lung injury and fibrosis. Krt8+ progenitors featured a highly distinct connectome of receptor-ligand pairs with endothelial cells, fibroblasts, and macrophages. To ‘sky dive’ into epithelial differentiation dynamics, we sequenced >30,000 sorted epithelial cells at 18 timepoints and computationally derived cell state trajectories that were validated by lineage tracing genetic reporter mice. Airway stem cells within the club cell lineage and alveolar type-2 cells underwent transcriptional convergence onto the same Krt8+ progenitor cell state, which later resolved by terminal differentiation into alveolar type-1 cells. We derived distinct transcriptional regulators as key switch points in this process and show that induction of TNF-alpha/NFkappaB, p53, and hypoxia driven gene expression programs precede a Sox4, Ctnnb1, and Wwtr1 driven switch towards alveolar type-1 cell fate. We show that epithelial cell plasticity can induce non-gradual transdifferentiation, involving intermediate progenitor cell states that may persist and promote disease if checkpoint signals for terminal differentiation are perturbed.
Publisher
Cold Spring Harbor Laboratory
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献