Integrative Analysis of Axolotl Gene Expression Data From Regenerative and Wound Healing Limb Tissues

Author:

Sibai Mustafa,Parlayan Cüneyd,Tuğlu Pelin,Öztürk Gürkan,Demircan Turan

Abstract

ABSTRACTAxolotl (Ambystoma mexicanum) is a urodele amphibian endowed with remarkable regenerative capacities manifested in scarless wound healing and full restoration of amputated limbs. Several regenerative cues of the axolotl limb were successfully unraveled due to the advent of high-throughput technologies and their employment in tackling research questions on several OMICS levels. The field of regenerative biology and medicine has therefore utilized the axolotl as a major and powerful experimental model. Studies which have previously unraveled differentially expressed (DE) genes en masse in different phases of the axolotl limb regeneration have primarily used microarrays and RNA-Seq technologies. However, as different labs are conducting such experiments, sufficient consistency may be lacking due to statistical limitations arising from limited number of sample replicates as well as possible differences in study designs. This study, therefore, aims to bridge such gaps by performing an integrative analysis of publicly available microarray and RNA-Seq data from axolotl limb samples having comparable study designs. Three biological groups were conceived for the analysis; homeostatic tissues (control group), from amputation/injury timepoint up to around 50 hours post amputation (wound healing group), and from 50 hours to 28 days post amputation/injury (regenerative group). Integrative analysis was separately carried out on the selected microarray and RNA-Seq data from axolotl limb samples using the “merging” method. Differential expression analysis was separately implemented on the processed data from both technologies using the R/Bioconductor “limma” package. A total of 1254 genes (adjusted P < 0.01) were found DE in regenerative samples compared to the control, out of which 351 showed magnitudes of Log Fold Changes (LogFC) > 1 and were identified as the top DE genes from data of both technologies. Downstream analyses illustrated consistent correlations of the logFCs of DE genes distributed among the biological comparisons, within and between both technologies. Gene ontology annotations demonstrated concordance with the literature on the biological process involved in the axolotl limb regeneration. qPCR analysis validated the observed gene expression level differences between regenerative and control samples for a set of five genes. Future studies may benefit from the utilized concept and approach for enhanced statistical power and robust discovery of biomarkers of regeneration.

Publisher

Cold Spring Harbor Laboratory

Reference87 articles.

1. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods

2. Phylogenetics of Model Organisms: The Laboratory Axolotl, Ambystoma Mexicanum

3. Genie Control of Axolotl Metamorphosis

4. Cell plasticity in homeostasis and regeneration

5. Cano-Martínez A , Vargas-González A , Guarner-Lans V , Prado-Zayago E , León-Olea M , Nieto-Lima B. Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Archivos de Cardiologia de Mexico. 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3