Abstract
ABSTRACTWhile membrane contact sites (MCS) between intracellular organelles are abundant1, and cell-cell junctions are classically defined2, very little is known about the contacts between membranes that delimit extracellular junctions within cells, such as those of chloroplasts and intracellular parasites. The malaria parasite replicates within a unique organelle, the parasitophorous vacuole (PV) but the mechanism(s) are obscure by which the limiting membrane of the PV, the parasitophorous vacuolar membrane (PVM), collaborates with the parasite plasma membrane (PPM) to support the transport of proteins, lipids, nutrients, and metabolites between the cytoplasm of the parasite and the cytoplasm of the host erythrocyte (RBC). Here, we demonstrate the existence of multiple micrometer-sized regions of especially close apposition between the PVM and the PPM. To determine if these contact sites are involved in any sort of transport, we localized the PVM nutrient-permeable and protein export channel EXP2, as well as the PPM lipid transporter PfNCR1. We found that EXP2 is excluded from, but PfNCR1 is included within these regions of close apposition. Thus, these two different transport systems handling hydrophilic and hydrophobic substances, respectively, assume complementary and exclusive distributions. This new structural and molecular data assigns a functional significance to a macroscopic membrane domain.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献