Contacting domains that segregate lipid from solute transporters in malaria parasites

Author:

Garten MatthiasORCID,Beck Josh R.ORCID,Roth Robyn,Tenkova-Heuser Tatyana,Heuser John,Bleck Christopher K. E.,Goldberg Daniel E.ORCID,Zimmerberg JoshuaORCID

Abstract

ABSTRACTWhile membrane contact sites (MCS) between intracellular organelles are abundant1, and cell-cell junctions are classically defined2, very little is known about the contacts between membranes that delimit extracellular junctions within cells, such as those of chloroplasts and intracellular parasites. The malaria parasite replicates within a unique organelle, the parasitophorous vacuole (PV) but the mechanism(s) are obscure by which the limiting membrane of the PV, the parasitophorous vacuolar membrane (PVM), collaborates with the parasite plasma membrane (PPM) to support the transport of proteins, lipids, nutrients, and metabolites between the cytoplasm of the parasite and the cytoplasm of the host erythrocyte (RBC). Here, we demonstrate the existence of multiple micrometer-sized regions of especially close apposition between the PVM and the PPM. To determine if these contact sites are involved in any sort of transport, we localized the PVM nutrient-permeable and protein export channel EXP2, as well as the PPM lipid transporter PfNCR1. We found that EXP2 is excluded from, but PfNCR1 is included within these regions of close apposition. Thus, these two different transport systems handling hydrophilic and hydrophobic substances, respectively, assume complementary and exclusive distributions. This new structural and molecular data assigns a functional significance to a macroscopic membrane domain.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasmodium: Vertebrate Host;Lifecycles of Pathogenic Protists in Humans;2022

2. Malaria parasite plasmepsins: More than just plain old degradative pepsins;Journal of Biological Chemistry;2020-06

3. Hardly Vacuous: The Parasitophorous Vacuolar Membrane of Malaria Parasites;Trends in Parasitology;2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3