Fine-scale position effects shape the distribution of inversion breakpoints inDrosophila melanogaster

Author:

McBroome JakobORCID,Liang David,Corbett-Detig Russell

Abstract

AbstractChromosomal inversions are among the primary drivers of genome structure evolution in a wide range of natural populations. While there is an impressive array of theory and empirical analyses that has identified conditions under which inversions can be positively selected, comparatively little data is available on the fitness impacts of these genome structural rearrangements themselves. Because inversion breakpoints can interrupt functional elements and alter chromatin domains, each rearrangement may in itself have strong effects on fitness. Here, we compared the fine-scale distribution of low frequency inversion breakpoints with those of high frequency inversions and inversions that have fixed betweenDrosophilaspecies. We identified important differences that may influence inversion fitness. In particular, proximity to insulator elements, large tandem duplications adjacent to the breakpoints, and minimal impacts on gene coding spans are more prevalent in high frequency and fixed inversions than in rare inversions. The data suggest that natural selection acts both to preserve both genes and larger cis-regulatory networks in the occurrence and spread of rearrangements. These factors may act to limit the availability of high fitness arrangements when suppressed recombination is favorable.

Publisher

Cold Spring Harbor Laboratory

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3